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Everything broken for network applications?
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Motivation

Network model

Simple case study: generalized three-detector problem (Newell (1993))

N(t, x)
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Notations from traffic flow modeling

Convention for vehicle labeling

N

x

t

F
lo
w
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Notations from traffic flow modeling

Three representations of traffic flow

Moskowitz’ surface

F
lo
w x

t

N

x

See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
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Notations from traffic flow modeling

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t − x t − n

CL
Variable Density ρ Spacing r

Equation ∂tρ+ ∂xQ(ρ) = 0 ∂t r + ∂xV (r) = 0

HJ

Variable Label N Position X

N(t, x) =

∫ +∞

x

ρ(t, ξ)dξ X (t, n) =

∫ +∞

n

r(t, η)dη

Equation ∂tN + H (∂xN) = 0 ∂tX + V (∂xX ) = 0

Hamiltonian H(p) = −Q(−p) V(p) = −V (−p)
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Basic recalls on Lax-Hopf formula Lax-Hopf formula

Setting

Consider Cauchy problem

{

ut + H(Du) = 0, in Rn × (0,+∞),

u(., 0) = u0(.), on Rn.
(1)

Two formulas according to the smoothness of

the Hamiltonian H

the initial data u0
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Basic recalls on Lax-Hopf formula Lax-Hopf formula

Lax-Hopf formulæ

Assumptions: case 1

(A1) H : Rn → R is convex

(A2) u0 : Rn → R is uniformly Lipschitz

Theorem (First Lax-Hopf formula)

If (A1)-(A2) hold true, then

u(x , t) := inf
z∈Rn

sup
y∈Rn

[u0(z) + y .(x − z)− tH(y)] (2)

is the unique uniformly continuous viscosity solution of (1).
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Basic recalls on Lax-Hopf formula Lax-Hopf formula

Legendre-Fenchel transform

First Lax-Hopf formula (2) can be recast as

u(x , t) := inf
z∈Rn

[

u0(z)− tH∗

(
x − z

t

)]

thanks to Legendre-Fenchel transform

L(z) = H∗(z) := sup
y∈Rn

(y .z − H(y)) .

Proposition (Bi-conjugate)

If H is strictly convex, 1-coercive i.e. lim
|p|→∞

H(p)

|p|
= +∞,

then H∗ is also convex and

(H∗)∗ = H.
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Basic recalls on Lax-Hopf formula LWR in Eulerian

LWR in Eulerian (t, x)

Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)

q = ∂tN and ρ = −∂xN

If density ρ satisfies the scalar (LWR) conservation law

∂tρ+ ∂xQ(ρ) = 0

Then N satisfies the first order Hamilton-Jacobi equation

∂tN − Q(−∂xN) = 0 (3)
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Basic recalls on Lax-Hopf formula LWR in Eulerian

LWR in Eulerian (t, x)

Legendre-Fenchel transform with Q concave (relative capacity)

M(q) = sup
ρ

[Q(ρ)− ρq]

M(q)

u

w

Density ρ

q

q

Flow F

w u

q

Transform M

−wρmax
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Basic recalls on Lax-Hopf formula LWR in Eulerian

LWR in Eulerian (t, x)
(continued)

Lax-Hopf formula

N(T , xT ) = min
u(.),(t0,x0)

∫ T

t0

M(u(τ))dτ + N(t0, x0),

∣
∣
∣
∣
∣
∣
∣
∣

Ẋ = u
u ∈ U
X (t0) = x0, X (T ) = xT
(t0, x0) ∈ J

(4) Time

Space

J

(T , xT )Ẋ (τ )

(t0, x0)

Viability theory [Claudel and Bayen, 2010]
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Basic recalls on Lax-Hopf formula LWR in Eulerian

LWR in Eulerian (t, x)
(Historical note)

Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)

Flow ,F

w

u

0 ρmax

Density , ρ

u

x

w

t

Time

Space

(t, x)

Minimum principle [Newell, 1993]

N(t, x) = min
[

N

(

t −
x − xu

u
, xu

)

,

N

(

t −
x − xw

w
, xw

)

+ ρmax(xw − x)
]

,

(5)
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Hamilton-Jacobi and source terms Problem Formulation

Long homogeneous corridor with numerous entrances and exits

Net lateral freeway “inflow” rate φ

F
lo
w

inflow

outflow

= φ

∂tρ+ ∂xH(ρ) = φ,

k = g on Γ
(6)

∂tN − H (−∂xN) = Φ,

N = G on Γ,
(7)

where

Φ(t, x) = −

∫ x

0
φ(t, y)dy

G (t, x) =

∮

Γ
g(t, x)dΓ, (t, x) ∈ Γ
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Hamilton-Jacobi and source terms Problem Formulation

Some remarks

The flow reads q = Nt −Φ and the cumulative count curves are

N(t, x) =

∫ t

0
q(s, x)ds

︸ ︷︷ ︸

usual N-curve

+

∫ t

0

∫ x

0
φ(s, y)dsdy

︸ ︷︷ ︸

net number of vehicles “entering”

If φ = φ(k) then

Φ(t, x) = Φ̃(t, x ,−Nx ) = −

∫ x

0
φ(−Nx (t, y))dy , (8)

This means that (7) becomes the more general HJ equation

Nt − H̃(t, x ,−Nx) = 0

where H̃(t, x , k) = H(k) + Φ̃(t, x , k).
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Hamilton-Jacobi and source terms Exogenous inflow

Variational problem

Lax-Hopf formula:

N(P) = min
B∈ΓP , ξ∈VBP

f (B , ξ) (9)

f (B , ξ) := G (B) +

∫ t

tB

R(s, ξ(s), ξ′(s)) ds

P ≡ (t, x) “target” point

B ≡ (tB , y) on the boundary ΓP

ξ ∈ VBP set of valid paths B → P

R(·) Legendre transform of H̃

R(t, x , v) = sup
k

{

H̃(t, x , k)− vk
}

.
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Hamilton-Jacobi and source terms Exogenous inflow

Assume a triangular flow-density diagram
The function f (B , ξ) to be minimized reads

f (B , ξ) = G (B) + (t − tB)Q − (x − y)K +

∫ t

tB

Φ(s, ξ(s)) ds

︸ ︷︷ ︸

=:J

(10)

where Q = capacity, K = critical density.

J = net number of vehicles leaving the area
A(ξ) below the curve x = ξ(t)

J = −

∫ t

tB

∫ ξ(s)

y

φ(s, x) dxds, (11)
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Hamilton-Jacobi and source terms Exogenous inflow

Initial value problems with constant density

Assume
N(0, x) = G (x) = −k0x (g(x) = k0) ,

φ(t, x) = a,
(12)

min f (B ≡ (y , 0), ξ) reached for a path
(i) maximizing A(ξ) when a > 0
(ii) or minimizing A(ξ) when a < 0

f (y) = c0 + c1y + c2y2 with c2 > 0

Explicit solution:

N(t, x) =
{

f (y∗), t > K−k0
a > 0

min{f (xU), f (xD)}, otherwise
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Hamilton-Jacobi and source terms Exogenous inflow

Extended Riemann problem (ERP)

Consider

(g(x),φ(x)) =

{

(kU , aU), x ≤ x0

(kD , aD), x > x0,
(13)

Assuming G (x0) = 0

G (x) =

{

(x0 − x)kU , x ≤ x0

(x0 − x)kD , x > x0
(14)

J-integral = weighted average of the portion of
A(ξ) upstream and downstream of x = x0 with
weighs aU and aD
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Hamilton-Jacobi and source terms Exogenous inflow

Extended Riemann problem (ERP)
(continued)

Same minimization of J(ξ)

f (y) = G (y) + tQ − (x0 − y)K + J(y) with

J(y) =

{

min{j1(y), j2(y), j3(y)}, y > x0

min{j4(y), j5(y), j6(y)}, y ≤ x0

Possible minima for the components of f (y)

y = yi ∈ ΓP , i = 1, . . . 6

Semi-explicit solution (9 candidates):

N(t, x0) = min
y∈Y

f (y)

Y = {xU , x0, xD , y
∗
1 , . . . y

∗
6 }
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Hamilton-Jacobi and source terms Numerical solution methods

Godunov’s method

Basis of the well known Cell Transmission (CT) model

Time and space increments ∆t and ∆x = u∆t

Numerical approximation of the density

k ji = k(j∆t, i∆x) (15)

Discrete approximation of the conservation law (6):

k j+1
i − k ji
∆t

+
qji+1 − qji

∆x
= φ(k ji ) (16)

with (CT rule)
qji = min{Q, uk ji , (κ − k ji+1)w} (17)
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Hamilton-Jacobi and source terms Numerical solution methods

Example

Consider an empty freeway at t = 0 with

g(x) = 0, (18a)

φ(k) = ax − buk , a, b > 0. (18b)

Exact solution (method of characteristics):

k(t, x) =
a

b2u

(

bx − 1 + (1− b(x − tu))e−btu
)

(19)

provided k(t, x) ≤ K (Laval, Leclercq (2010))
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Hamilton-Jacobi and source terms Numerical solution methods

Example
(continued)

Comparison of numerical solutions (∆t = 40 s) and the exact solution

Main difference = the flow estimates
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Hamilton-Jacobi and source terms Numerical solution methods

Example
(continued)

Density RMSE (numerical VS exact solution) for varying ∆t:

Both converge as ∆t → 0

Accuracy of ERP > CT rule
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Hamilton-Jacobi and source terms Numerical solution methods

Example
(continued)

Optimal candidate that minimizes f (y) at each time step

Difference when k → K

Most accurate optimal
candidate y∗1
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Hamilton-Jacobi and source terms Numerical solution methods

Variational networks

!t

u

-w

v
i

"
i

#
i

time#
i

i

S
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Hamilton-Jacobi and source terms Numerical solution methods

Variational networks

!t

u

-w

v
i

"
i

#
i

time#
i

i

S
i
$ area

!x

space

Only three wave speeds with costs

L(vi ) =

⎧

⎪
⎨

⎪
⎩

wκ, vi = −w

Q, vi = 0

0, vi = u

(20)

The cost on each link:

ci = L(vi )τi + Ji .

Ji = contribution of the J-integral in
the cost of each link i
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Hamilton-Jacobi and source terms Numerical solution methods

Variational networks

!t

u

-w

v
i

"
i

#
i

time#
i

i

S
i
$ area

!x

space

Advantage: free of numerical errors
(when inflows are exogenous)

Drawback:
cumbersome to implement unless u

w
is

an integer
merge models expressed in terms of
flows or densities rather than N values:
additional computational layer needed
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Hamilton-Jacobi on networks

Outline

1 Notations from traffic flow modeling

2 Basic recalls on Lax-Hopf formula

3 Hamilton-Jacobi and source terms

4 Hamilton-Jacobi on networks

G. Costeseque HJ equations & traffic flow Marne-la-Vallée, May 12 2016 32 / 50



Hamilton-Jacobi on networks

A special network = junction

HJN

HJ1

HJ2

HJ3

HJ4

HJ5

Network
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Hamilton-Jacobi on networks

A special network = junction

HJN

HJ1

HJ2

HJ3

HJ4

HJ5

Network

HJ4

HJ2

HJ1

HJ3

Junction J
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Hamilton-Jacobi on networks

Space dependent Hamiltonian

Consider HJ equation posed on a junction J
{

ut + H(x , ux) = 0, on J × (0,+∞),

u(t = 0, x) = g(x), on J
(21)

Extension of Lax-Hopf formula(s)?

No simple linear solutions for (21)

No definition of convexity for discontinuous functions
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Hamilton-Jacobi on networks Literature with application to traffic

Junction models

Classical approaches for CL:

Macroscopic modeling on (homogeneous) sections

Coupling conditions at (pointwise) junction

For instance, consider

⎧

⎪
⎨

⎪
⎩

ρt + (Q(ρ))x = 0, scalar conservation law,

ρ(., t = 0) = ρ0(.), initial conditions,

ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.

(22)

See Garavello, Piccoli [4], Lebacque, Khoshyaran [6] and Bressan et al. [1]
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Hamilton-Jacobi on networks Literature with application to traffic

Examples of junction models

Model with internal state (= buffer(s))
Bressan & Nguyen (NHM 2015) [2]

ρ (→ Q(ρ) strictly concave
advection of γij(t, x) turning ratios from (i) to (j)
(GSOM model with passive attribute)
internal dynamics of the buffers (ODEs): queue lengths

Extended Link Transmission Model
Jin (TR-B 2015) [5]

Link Transmission Model (LTM) Yperman (2005, 2007)
Triangular diagram

Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax ]

Commodity = turning ratios γij(t)
Definition of boundary supply and demand functions
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Hamilton-Jacobi on networks Settings

First remarks

If N solves
Nt + H (Nx) = 0

then N̄ = N + c for any c ∈ R is also a solution
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Hamilton-Jacobi on networks Settings

First remarks

If N solves
Nt + H (Nx) = 0

then N̄ = N + c for any c ∈ R is also a solution

N i(t, x)

N0(t)

N j(t, x)

(j)

(i)

No a priori relationship between initial
conditions

Nk(t, x) consistent along the same
branch Jk and

∂tN
0(t) =

∑

i

∂tN
i
(

t, x = 0−
)

=
∑

j

∂tN
j
(

t, x = 0+
)
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Hamilton-Jacobi on networks Settings

Key idea

Assume that H is piecewise linear (triangular FD)

Nt + H (Nx) = 0

with
H(p) = max{H+(p)

︸ ︷︷ ︸

supply

, H−(p)
︸ ︷︷ ︸

demand

}
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Hamilton-Jacobi on networks Settings

Key idea

Assume that H is piecewise linear (triangular FD)

Nt + H (Nx) = 0

with
H(p) = max{H+(p)

︸ ︷︷ ︸

supply

, H−(p)
︸ ︷︷ ︸

demand

}

Partial solutions N+ and N− that solve resp.
⎧

⎪
⎨

⎪
⎩

N+
t + H+ (N+

x ) = 0,

N−
t + H− (N−

x ) = 0

such that N = min
{

N−,N+
}

Upstream demand advected by waves moving forward

Downstream supply transported by waves moving backward
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Hamilton-Jacobi on networks Mathematical expression

Junction model

Optimization junction model (Lebacque’s talk)
Lebacque, Khoshyaran (2005) [6]

max

⎡

⎣
∑

i

φi(qi ) +
∑

j

ψj(rj )

⎤

⎦

s.t.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 ≤ qi ∀i
qi ≤ δi ∀i
0 ≤ rj ∀j
rj ≤ σj ∀j
0 = rj −

∑

i γijqi ∀j

(23)

where φi , ψj are concave, non-decreasing
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Hamilton-Jacobi on networks Mathematical expression

Example of optimization junction models

Herty and Klar (2003)

Holden and Risebro (1995)

Coclite, Garavello, Piccoli (2005)

Daganzo’s merge model (1995) [3]

⎧

⎪
⎨

⎪
⎩

φi (qi ) = Nmax

(

qi −
q2i

2piqi ,max

)

ψ = 0

where pi is the priority of flow coming from road i and Nmax = φ′i (0)
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Hamilton-Jacobi on networks Mathematical expression

Solution of the optimization model
Lebacque, Khoshyaran (2005)

Karush-Kuhn-Tucker optimality conditions:

For any incoming road i

φ′i(qi )+
∑

k

skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi(qi −δi) = 0,

and for any outgoing road j

ψ′
j (rj)− sj − λj = 0, λj ≥ 0, ri ≤ σj and λj(rj − σj) = 0,

where (sj ,λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers)
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Hamilton-Jacobi on networks Mathematical expression

Solution of the optimization model
Lebacque, Khoshyaran (2005)

⎧

⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎩

qi = Γ[0,δi ]

(

(φ′i )
−1

(

−
∑

k

γiksk

))

, for any i ,

rj = Γ[0,σj ]

(

(ψ′
j )
−1(sj)

)

, for any j ,

(24)

ΓK is the projection operator on the set K

∑

i qi

∑

i γijδi

σj rj

sj
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Hamilton-Jacobi on networks Mathematical expression

Model equations

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

N i
t + Hi (N i

x ) = 0, for any x ̸= 0,

{

∂tN i (t, x−) = qi (t),

∂tN j (t, x+) = rj(t),
at x = 0,

N i (t = 0, x) = N i
0(x),

∂tN i (t, x = ξi) = ∆i (t),

∂tN j(t, x = χj) = Σj(t)
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Hamilton-Jacobi on networks Mathematical expression

Algorithm

Inf-morphism property: compute partial solutions for

initial conditions

upstream boundary conditions

downstream boundary conditions

internal boundary conditions

1 Propagate demands forward
through a junction, assume that the downstream supplies are maximal

2 Propagate supplies backward
through a junction, assume that the upstream demands are maximal
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Spatial discontinuity

Time

Space

Density

Flow

Downstream condition

(u)
(d)

Upstream condition

Initial condition
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Numerical results
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Conclusion and perspectives

Final remarks

In a nutshell:

No explicit solution right now

Only specific cases

Importance of the supply/demand functions

General optimization problem at the junction

Perspectives:

Lane changing behaviors

Estimation on networks

Stationary states
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