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HJ & Lax-Hopf formula

Hamilton-Jacobi equations: why and what for?
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HJ & Lax-Hopf formula

Hamilton-Jacobi equations: why and what for?

Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution

Efficient computational methods

¢ © ¢ ¢ ¢

Easy integration of GPS data

[MAZARE ET AL, 2012]

Everything broken for network applications?
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Motivation

Network model

Simple case study: generalized three-detector problem (NEWELL (1993))
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Outline

@ Notations from traffic flow modeling
© Basic recalls on Lax-Hopf formula

© Hamilton-Jacobi and source terms

@ Hamilton-Jacobi on networks
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Notations from traffic flow modeling
Outline

@ Notations from traffic flow modeling
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Notations from traffic flow modeling

Convention for vehicle labeling

Flow

v

HJ equations & traffic flow Marne-la-Vallée, May 12 2016 6/ 50



Notations from traffic flow modeling

Three representations of traffic flow

Moskowitz' surface

Flow

See also [MAKIGAMI ET AL, 1971], [LAVAL AND LECLERCQ, 2013]
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Notations from traffic flow modeling

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangian
t—Xx t—n
Variable Density p Spacing r
CL
Equation ‘ Oep + 0xQ(p) =0 ‘ ‘ Oer + 05 V(r) =0 ‘
Variable Label N Position X
+00 +oo
Mex) = [ peode | M) = [ (e
HJ x n
Equation | |9:N + H (0,N) = 0] [0:X +V (0,X) = 0|

Hamiltonian

G. Costeseque
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Basic recalls on Lax-Hopf formula
Outline

© Basic recalls on Lax-Hopf formula
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Basic recalls on Lax-Hopf formula Lax-Hopf formula
Setting

Consider Cauchy problem

us + H(Du) = 0, in R" x (0,+00),
u(.,0) = up(.), on R".

Two formulas according to the smoothness of

@ the Hamiltonian H

@ the initial data ug
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Basic recalls on Lax-Hopf formula Lax-Hopf formula

Lax-Hopf formulae

Assumptions: case 1

(A1) H:R" — R is convex
(A2) ug : R"™ — R is uniformly Lipschitz

Theorem (First Lax-Hopf formula)
If (A1)-(A2) hold true, then

u(x, t) = Zigﬂgnyseulgn [uo(2) + y.(x — z) — tH(y)] (2)

is the unique uniformly continuous viscosity solution of (1).

HJ equations & traffic flow Marne-la-Vallée, May 12 2016 11 / 50



Basic recalls on Lax-Hopf formula Lax-Hopf formula

Legendre-Fenchel transform

First Lax-Hopf formula (2) can be recast as

u(x,t) == inf [Uo(z) i <X—z)]

zERN t

thanks to Legendre-Fenchel transform

L(z) = H*(z) := sup (y.z = H(y)).

yeR?
Proposition (Bi-conjugate)
H
If H is strictly convex, 1-coercive i.e. lim ﬂ = +00,
lpl—oo [Pl
then H* is also convex and
(H*)* = H.
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LWR in Eulerian
LWR in Eulerian (t, x)

@ Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)
g=0:N and p=—-0N
@ If density p satisfies the scalar (LWR) conservation law
Drp+ 0:Q(p) = 0
@ Then N satisfies the first order Hamilton-Jacobi equation

O¢N — Q(_axN) =0 (3)

HJ equations & traffic flow Marne-la-Vallée, May 12 2016 13 / 50



LWR in Eulerian
LWR in Eulerian (t, x)

@ Legendre-Fenchel transform with Q concave (relative capacity)

M(q) = sup [Q(p) — pq]

Transform M
A

Flow §

A

N —WPmax

1 Density p w u
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LWR in Eulerian
LWR in Eulerian (t, x)

(continued)

@ Lax-Hopf formula

* Space

N(T,x7) m|n / M(u(r))dT + N(to, x0),

,(to,%0)

uEU
X(to):XO, X(T):XT
(to,x0) € J

(4)

@ Viability theory [CLAUDEL AND BAYEN, 2010]
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Basic recalls on Lax-Hopf formula LWR in Eulerian

LWR in Eulerian (t, x)

(Historical note)

@ Dynamic programming [DAGANZO, 2006] for triangular FD
(u and w free and congested speeds)

Space

Flow,§

Density, p

T
0

Prmax

@ Minimum principle [NEWELL, 1993]

N(t,x) = min [N <t— X_Xu,xu>,

u

X — X
N <t_ W W7XW> +pmax(XW_X) s

HJ equations & traffic flow

(5)
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Hamilton-Jacobi and source terms
Outline

© Hamilton-Jacobi and source terms
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Hamilton-Jacobi and source terms Problem Formulation

@ Long homogeneous corridor with numerous entrances and exits

o Net lateral freeway “inflow” rate ¢

Flow

G. Costeseque

dep + OxH(p) = ¢,

k=g on T
OtN — H(—0«N) = o,
N=G on T,

where

o(t,x) = - /0 " o(t.y)dy

G(t,x) = }{g(t,x)dr, (t.x) el

HJ equations & traffic flow
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Hamilton-Jacobi and source terms Problem Formulation

Some remarks

@ The flow reads g = N; — ® and the cumulative count curves are

N(t,x) = /th(s,x)ds—i- /Ot/OX é(s, y)dsdy

usual N-curve net number of vehicles “entering”

o If ¢ = ¢(k) then

O(tx) = B(tx,—Ny) = /O TNty ()

@ This means that (7) becomes the more general HJ equation

Ny — A(t,x, —Ny) =0
where A(t,x, k) = H(k) + ®(t, x, k).
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Hamilton-Jacobi and source terms Exogenous inflow

Variational problem

space
X, (@)
L W
_u
* P=(t,x)
Y 1860 all validpaths in
W ¥ this areq define 'VBP
xU
Iy t time

G. Costeseque

Lax-Hopf formula:

MP) =, min  f(B.) (9)

t
(B.)i= G(B) + [ R(s.£(5).€() os
tp
o P = (t,x) "target” point
@ B = (tg,y) on the boundary "
@ £ € Vpp set of valid paths B — P
o R(-) Legendre transform of H

R(t,x,v) =sup {I:I(t,x, k) — vk} .
k
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Hamilton-Jacobi and source terms Exogenous inflow

@ Assume a triangular flow-density diagram
@ The function f(B,¢) to be minimized reads

F(B,€) = G(B) + (t — t5)Q — (x — y)K + /t (s, £(s)) ds (10)

tg

=:J
where Q = capacity, K = critical density.

space (b)

J = net number of vehicles leaving the area
A(€) below the curve x = £(t)

J= —/t/é(s) o(s,x) dxds, (1)

tg Jy

\//;@FHIEH

t,=0 t time
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Hamilton-Jacobi and source terms Exogenous inflow

Initial value problems with constant density

Assume
N(0,x) = G(x) = —kox  (g(x) = ko) , 12)
gb(t,x) = a,
space @ @ minf (B = (y,0),&) reached for a path

(i) maximizing A(§) when a >0
(ii) or minimizing A(§) when a < 0

° f(Y) =c +cay+ ng2 with ¢ > 0
@ Explicit solution:

N(t,x) =
Fly*), t>Kk >0
min{f(xy), f(xp)}, otherwise

t time

G. Costeseque HJ equations & traffic flow Marne-la-Vallée, May 12 2016 22 / 50



Exogenous inflow
Extended Riemann problem (ERP)

Consider
(ku,au), x<xo

(g(x), ¢(x)) = {

(kp,ap), x> xo,

space (b)

Assuming G(xo) =0

B (x0 — x)ky, x < xp
G(X) N {(XO — X)kD, X > Xp (14)

J-integral = weighted average of the portion of
A(€) upstream and downstream of x = xp with
weighs ay and ap

0 t time
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Exogenous inflow
Extended Riemann problem (ERP)

(continued)

Same minimization of J(§)

o f(y)=G(y)+tQ — (xo — y)K + J(y) with

space ®) I(y) = min{j1(y),2(¥),3(¥)}, ¥ > xo
min{ja(y),Js(¥).Js(¥)}, ¥ <o
@ Possible minima for the components of f(y)

y=yiel? i=1,...6

@ Semi-explicit solution (9 candidates):

N(t,x0) = }r/ne'g} f(y)

_ * *
y = {XUuX07XD7y17"'y6}
HJ equations & traffic flow Marne-la-Vallée, May 12 2016 24 / 50
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Hamilton-Jacobi and source terms Numerical solution methods

Godunov's method

@ Basis of the well known Cell Transmission (CT) model
@ Time and space increments At and Ax = uAt

@ Numerical approximation of the density
K = k(jAt, iAx) (15)
@ Discrete approximation of the conservation law (6):

k{+1 _k{ + q;+1_qf
At Ax

= o(K)) (16)

with (CT rule) _ ' _
@ = min{Q ukl, (x — K, )w} (17)
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Hamilton-Jacobi and source terms Numerical solution methods

Example

@ Consider an empty freeway at t = 0 with

g(x) =0, (18a)
¢(k) = ax — buk, a,b>0. (18b)

@ Exact solution (method of characteristics):

k(t,x) = 1o (bx 14+ (1- b(x— tu))e_b“’) (19)

b‘u
provided k(t,x) < K (LAavAL, LECLERCQ (2010))
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Hamilton-Jacobi and source terms Numerical solution methods

Example

(continued)

Comparison of numerical solutions (At = 40 s) and the exact solution

140f 7000
120¢ 6000
g 100 5000
80 4000
> 3000
< 60
40 2000
20} 100047,
1
0.5 1.0 1.5 20 25 3.0 35 0.5 1.0 1.5 2.0 2.5 3.0 35
time, min time, min

exact solution (eqn 36) _~~ ERP rule .<" CTrule

Main difference = the flow estimates
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Hamilton-Jacobi and source terms Numerical solution methods

Example

(continued)

Density RMSE (numerical VS exact solution) for varying At:

RMSE

@ Both converge as At — 0
@ Accuracy of ERP > CT rule

10 20 30 40
At, sec
[ exact solution (eqn36) _~~ ERPrule .+" CTrule

HJ equations & traffic flow Marne-la-Vallée, May 12 2016 28 / 50



Hamilton-Jacobi and source terms Numerical solution methods

Example

(continued)

Optimal candidate that minimizes f(y) at each time step

y*
2@
2 :
S X, : o Difference when k — K
£ . ; @ Most accurate optimal
g’ candidate y;

051015 20 25 30 35

time, min
[ exact solution (eqn36) _~~ ERPrule .+” CT rule
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Hamilton-Jacobi and source terms Numerical solution methods

Variational networks

N space

At S, = area
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Hamilton-Jacobi and source terms Numerical solution methods

Variational networks

Ax

@ Only three wave speeds with costs

space

WK, Vi=—w
- ﬁ(Vl) =< Q, Vi = (20)
0, Vi=u

@ The cost on each link:

» ¢ = L(v))ri + Ji.

. @ J; = contribution of the J-integral in

S, =area

e the cost of each link /
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Hamilton-Jacobi and source terms Numerical solution methods

Variational networks

space N
BRSO I @ Advantage: free of numerical errors
R (when inflows are exogenous)
S S @ Drawback:
i} Sl os S @ cumbersome to implement unless - is
. an integer
SEENCH ECH G R o merge models expressed in terms of
AR IO B B flows or densities rather than N values:
Ax S T additional computational layer needed
N—MA/ “T" S=arca time
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Hamilton-Jacobi on networks
Outline

@ Hamilton-Jacobi on networks
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Hamilton-Jacobi on networks

A special network = junction
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Hamilton-Jacobi on networks

A special network = junction

HJy

HJ3

Junction J
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Hamilton-Jacobi on networks

Space dependent Hamiltonian

Consider HJ equation posed on a junction J

us + H(x, ux) =0, on Jx(0,+00),
u(t=0,x) = g(x), on J
Extension of Lax-Hopf formula(s)?

@ No simple linear solutions for (21)

@ No definition of convexity for discontinuous functions

HJ equations & traffic flow Marne-la-Vallée, May 12 2016
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Hamilton-Jacobi on networks Literature with application to traffic

Junction models

Classical approaches for CL.:

@ Macroscopic modeling on (homogeneous) sections

@ Coupling conditions at (pointwise) junction

For instance, consider

pe +(Q(p)), =0, scalar conservation law,
p(.,t=0)=po(.), initial conditions, (22)
P(p(x =07,t),p(x =0%,t)) =0,  coupling condition.

See Garavello, Piccoli [4], Lebacque, Khoshyaran [6] and Bressan et al. [1]
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R ETUTIMCT N BTSNl Literature with application to traffic

Examples of junction models

@ Model with internal state (= buffer(s))
BrESsAN & NGUYEN (NHM 2015) [2]

e p > Q(p) strictly concave

@ advection of ;;(t, x) turning ratios from (/) to (§)
(GSOM model with passive attribute)

@ internal dynamics of the buffers (ODEs): queue lengths

@ Extended Link Transmission Model
Jin (TR-B 2015) [5]
@ Link Transmission Model (LTM) YPERMAN (2005, 2007)
@ Triangular diagram

Q(p) = min{up, w(pmax —p)} forany p € [0, pmax]

o Commodity = turning ratios ~;(t)
o Definition of boundary supply and demand functions

HJ equations & traffic flow Marne-la-Vallée, May 12 2016

36 / 50



Hamilton-Jacobi on networks ESISETHES

First remarks

If N solves
N+ H(Ny) =0

then N = N + ¢ for any ¢ € R is also a solution

Marne-la-Vallée, May 12 2016
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Hamilton-Jacobi on networks ESISETHES

First remarks

If N solves
N+ H(Ny) =0
then N = N + ¢ for any ¢ € R is also a solution
Ni(t, x) @ No a priori relationship between initial
conditions

Ni(t.x) @ N¥(t,x) consistent along the same
branch J, and

)
8tN0(t) - ZatNi (t,X - 0_)
=Y 0N (t,x=07)
NO(t) J

HJ equations & traffic flow Marne-la-Vallée, May 12 2016 37 / 50



Hamilton-Jacobi on networks ESISETHES
Key idea

Assume that H is piecewise linear (triangular FD)
Ne + H(Ny) =0
with
H(p) = max{H"(p) , H (p)}
——

——
supply demand

HJ equations & traffic flow Marne-la-Vallée, May 12 2016
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Hamilton-Jacobi on networks ESISETHES
Key idea

Assume that H is piecewise linear (triangular FD)

Ny + H(Ny) =0
with

H(p) = max{H"(p) , H (p)}
—— =
supply demand

Partial solutions N* and N~ that solve resp.

N+ HE (NS) =0,
such that N =min {N~,N"}
Ny +H (N;)=0

@ Upstream demand advected by waves moving forward
@ Downstream supply transported by waves moving backward
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Hamilton-Jacobi on networks Mathematical expression

Junction model

Optimization junction model (Lebacque’s talk)
LEBACQUE, KHOSHYARAN (2005) [6]

max Z ¢i(qi) + Z ¥i(r;)

0<gqi Vi

23

qi <9; Vi (23)
st. | 0<r; vj
rj < oj W]

0=ri—> i vj

where ¢;, 1); are concave, non-decreasing
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Hamilton-Jacobi on networks Mathematical expression

Example of optimization junction models

@ Herty and Klar (2003)

@ Holden and Risebro (1995)

o Coclite, Garavello, Piccoli (2005)
@ Daganzo's merge model (1995) [3]

q?
i(qi) = Nmax { Gi = 5——
¢(q) 2 (q 2piqi,max>
Y=0

where p; is the priority of flow coming from road i and Npax = ¢/(0)
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Hamilton-Jacobi on networks Mathematical expression

Solution of the optimization model
LEBACQUE, KHOSHYARAN (2005)

Karush-Kuhn-Tucker optimality conditions:

@ For any incoming road i

Qb:'(qi)‘i‘zsk')/ik_)\i =0, AN>0, g <96 and X\(gi—0d;)=0,
K

@ and for any outgoing road j
Ui() =5 =X =0, A>0, r<o; and Xj(r—0;)=0,

where (sj, Aj) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers)
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Hamilton-Jacobi on networks Mathematical expression

Solution of the optimization model
LEBACQUE, KHOSHYARAN (2005)

o-ru (i (-Sona)).
(24)

ri =0, ((wj’-)fl(sj)) , for any J,

Ik is the projection operator on the set K

9; I
R
Z,‘ qi ’ \‘ !
: > Sj
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Hamilton-Jacobi on networks Mathematical expression

Model equations

NI + H;(N.) =0, for any x #£0,

at x=0,

8tNi(tvx_) = qi(t)7
ath(t,X+) = rj(t)v

Ni(t = 0,x) = Nj(x),

atNi(t,X = f,) = A,’(I‘),

LNV (t, x = x;) = Z;(t)

HJ equations & traffic flow Marne-la-Vallée, May 12 2016 43 / 50



Hamilton-Jacobi on networks Mathematical expression
Algorithm

Inf-morphism property: compute partial solutions for

@ initial conditions
@ upstream boundary conditions
@ downstream boundary conditions

@ internal boundary conditions

© Propagate demands forward

@ through a junction, assume that the downstream supplies are maximal
© Propagate supplies backward

@ through a junction, assume that the upstream demands are maximal
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[ ETMTIMTEN BT IRCTINIAWI{ I Application to a simple junction

Spatial discontinuity

Time
A

Upstream condition .
p Downstream condition

Space

°
Initial condition /

Flow

(d)

Density
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(MR BTSN IEAWI{ I Application to a simple junction

Numerical results

Initial (demand) Initial (supply)

3 3
2 100
£ 1 = 80
é _~<
0 o 0 60
o o
© ©
& & - 40
2 20
_3 0
0.2 . 0.2 .
Tlme h) Tlme h)
5 Up Down
100
1 80
_~<
® 0 60
o
©
& - 40
20
0
0.2 0.4 0.6 0.2 .
Time (h) Tlme h)
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[ ETMTIMTEN BT IRCTINIAWI{ I Application to a simple junction

Numerical

Space (km)

Space (km)

results
Godunov
s Delta x = 0.05
2 100
1 80
0 60
40
2
20
-3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (h)
s Lax-Hopf
2 100
1 80
0 60
- 40
2
20
-3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (h)
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[ ETMTIMTEN BT IRCTINIAWI{ I Application to a simple junction

Numerical results

Absolute error
Delta x = 0.05

<90

- 60

Space (km)

i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (h)
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Conclusion and perspectives

Final remarks

In a nutshell:

@ No explicit solution right now
@ Only specific cases
@ Importance of the supply/demand functions

@ General optimization problem at the junction

Perspectives:

@ Lane changing behaviors
@ Estimation on networks

@ Stationary states

HJ equations & traffic flow Marne-la-Vallée, May 12 2016
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