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Introduction

Kauffman’s Boolean Networks

Boolean networks (BNs) originated in

S. A. Kauffman. Homeostasis and differentiation in random
genetic control networks. Nature, 224(215):177–178, 1969.

S. A. Kauffman. Metabolic stability and epigenesis in
randomly constructed genetic nets. J. Theor. Biol.,
22:437–467, 1969.

are well-known in the scope of modeling complex systems of
different kinds: regulatory networks, cell differentiation, evolution,
immune response, neural networks, social networks, interactions
over WWW.
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Introduction

Boolean Network for Flowers of Arabidopsis Thaliana

Y.-E. Sanchez-Corrales, E.R. Alvarez-Buylla, L. Mendoza.
The Arabidopsis Thaliana flower organ specification gene
regulatory network determines a robust differentiation
process. J. Theor. Biol., 264:971-983, 2010.
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Introduction

Examples of Differentiation for Arabidopsis Thaliana
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Introduction

Examples of Differentiation for Stem Cells



Analysing Kauffman Boolean Networks

Introduction

Fixpoints of Differentiation for Stem Cells
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Introduction

One Examples of Differentiation for Stem Cells
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Problem Definition

Problems of Interest

Given a boolean map F : {0, 1}n → {0, 1}n. We are interested in:

finding fixpoints of the map (also called singleton attractors),
i. e. finding points x ∈ {0, 1}n such that x = F (x);

finding k-cycles of the map (also called cyclic attractors), i. e.
finding points x ∈ {0, 1}n such that x = F k(x) and k > 1
obeying this identity is minimal, where
F k+1 = F ∘ F k ,F 1 = F ;

finding basins of attractors, both singleton and cyclic, i. e.
finding sets of points x ∈ {0, 1}n such that after some number
of iterations of the map F it falls into the corresponding
attractor.
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Problem Definition

Boolean Map as Functional Network

⎧⎪⎪⎨⎪⎪⎩
x1 = x3 ∨ x4
x2 = x2
x3 = x3 ⊕ (x1 · x2)
x4 = x3
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Problem Definition

Problem Complexity

The NP-hardness of BNs fixpoint problem was independently
established in

T. Akutsu, S. Kuhara, O. Maruyama, and S. Miyano. A
system for identifying genetic networks from gene expression
patterns produced by gene disruptions and overxpressions.
Genome Informatics, 9:151–160, 1998.

M. Milano and A. Roli. Solving the satisfiability problem
through boolean networks. In Proceedings of the 6th Congress
of the Italian Association for Artificial Intelligence on
Advances in Artificial Intelligence, volume 1792 of Lecture
Notes in Artificial Intelligence, pages 72–83. Springer-Verlag,
1999.
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Problem Definition

Solving BNs Fixpoint Problems

To solve the fixpoint problem different techniques were developed
(non-exhaustive reference list):

boolean formulae satisfiability with SAT-solvers [Dubrova,
Teslenko, 2011];

abstract interpretation of dynamical systems [Paulevé,
Magnin, Roux, 2012];

Petri nets modeling [Steggles, Banks, Shaw, Wipat, 2007];

matrix algebras computations [Cheng, Qi, Zhao, 2012];

graph-theoretical decompositions [Zhang, Hayashida, Akutsu,
Ching, Ng, 2007; Soranzo, Iacono, Ramezani, Altafini, 2012].
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Problem Definition

What We Do

Our approach consists of:

decomposition of an original network into smaller networks
(this talk);

solving Fixpoint Problem for each small network;

reconstruction solution for the entire network from “small”
sub-solutions.
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Method Development

Idea: Acyclic Case



Analysing Kauffman Boolean Networks

Method Development

Idea: Acyclic Case



Analysing Kauffman Boolean Networks

Method Development

Idea: Acyclic Case



Analysing Kauffman Boolean Networks

Method Development

Idea: Acyclic Case



Analysing Kauffman Boolean Networks

Method Development

Idea: Acyclic Case
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Method Development

Idea: Add One Feedback Arc
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Idea: Add One Feedback Arc



Analysing Kauffman Boolean Networks

Method Development

Idea: Add One Feedback Arc
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Method Development

Feedback (Arc) Region

For each feedback arc ST let us consider next vertices belonging to
the graph G without all feedback arcs:

upper cone of the arc end Con+(T ) is a set of all vertices
being reachable from the end of the feedback arc;

lower cone of the arc start Con−(S) is a set of all vertices
reaching the start of the feedback arc.

Reg(ST ) = Con+(T ) ∩ Con−(S).
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Method Development

Feedback Region

T

S
Con+(T)

Con-(S)

Reg(ST)
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Method Development

Big Region

Con+(T)
S

T
Con-(S)

Q

R

Big Region includes
all vertices of
feedback upper and
lower cones which
are disjoint.
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Method Development

Region Interaction: Simple Influence

T

R

Q

S

One region is
contained within a
zone of influence
(upper cone) of
another region:
R ∈ Con+(T ) ∨
T ∈ Con+(R)
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Method Development

Region Interaction: Tangled

T
R

Q

S
One region is
partially influenced
by another (only
part of a region lies
within upper cone
of another):
R ̸∈ Con+(T ) ∧
T ̸∈ Con+(R) ∧
(Q ∈ Con+(T ) ∨
S ∈ Con+(R))
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Method Development

Region Interaction: Disjoint

S

T

Q

R

Regions are disjoint
and do not interact:
Con−(S) ∩
Con+(R) = ∅ ∧
Con+(T ) ∩
Con−(Q) = ∅
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Method Development

Feedback Arc Set Problem

Given a directed graph G = (V ,A).

We need to find its maximum acyclic spanning subgraph
G1 = (V ,A0).

Arcs excluded from this subgraph (A1 = A ∖ A0) are called
feedback arcs. This gives a name for the complementary
problem: finding a minimum feedback arc set (MinFAS). It is
not unique.

In general this problem is hard to solve. Therefore we need an
efficient algorithm finding a correct (upper) approximation of
FAS.
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Method Development

FAS Algorithmics

R. M. Karp. Reducibility among combinatorial problems. In
R. Miller and J. Thatcher, editors, Complexity of Computer
Computations, pages 85–103. Plenum Press, New York, 1972.

B. Berger and P. W. Shor. Approximation algorithms for the
maximum acyclic subgraph problem. In Proceedings of First
ACM–SIAM Symposium on Discrete Algorithms, pages
236–243. ACM Press, 1990.

P. Eades, X. Lin, and W. F. Smyth. A fast and effective
heuristic for the feedback arc set problem. Information
Processing Letters, 47(6):319–323, 1993.

G. Even, J. Noar, B. Schieber, and M. Sudan. Approximating
minimum feedback sets and multicuts in directed graphs.
Algorithmica, 20:151–174, 1998.
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Method Development

Algorithm Characteristics

It can solve weighted and unweighted problems. At the
moment, its unweighted version is used. The weighted version
is investigated in the scope how to take into account
information about network properties.

It consists of relatively simple matrix manipulations being
highly parallelizable.

If n is number of graph vertices, then overall complexity of
this method is O(𝜖−2n2M(n)log2 n), where 𝜖 is a parameter
relating to approximation quality, M(n) – complexity of an
n × n matrices multiplication.

It is widely known to be one of the best approximations what
is important for successful use of our method.
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Network Example: 19 vertices
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Network Example: 19 vertices, 𝜖 = 1.0
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Network Example: 19 vertices, 𝜖 = 0.01
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Method Development

Network Example: 100 vertices
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Network Example: 100 vertices, 𝜖 = 1.0
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Network Example: 100 vertices, 𝜖 = 0.01
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Method Evaluation

Network Statistics Examples

𝜖 #Vert’s #Arcs #Reg’s Big Reg. #Vert’s per Reg.

0.01 30 45 2 no 4 / 5.50 / 7

0.5 30 45 4 yes 4 / 11.5 / 20

0.01 30 54 4 no 2 / 3.00 / 5

0.5 30 54 6 yes 2 / 7.50 / 25

0.01 100 160 4 no 3 / 5.00 / 7

0.5 100 160 6 yes 2 / 8.67 / 20
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Method Evaluation

Network Statistics Examples: 100 Vertices

𝜖 #Arcs #Reg’s Big Reg. #Vert’s per Reg.

0.01 144 5 no 3 / 8.40 / 20

0.5 144 7 yes 3 / 16.71 / 56

1 144 7 yes 3 / 16.71 / 56

0.01 153 7 no 2 / 3.86 / 9

0.5 153 10 yes 2 / 12.8 / 41

1 153 13 yes 2 / 10.54 / 28

0.01 179 9 no 3 / 8.78 / 33

0.5 179 12 yes 2 / 10.17 / 51

1 179 13 yes 3 / 10.85 / 32

0.01 185 8 no 2 / 10.50 / 21

0.5 185 10 yes 2 / 10.50 / 23

1 185 11 yes 2 / 12.36 / 23
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