

Optimal fleet management for real-time ridesharing service considering network congestion

Negin Alisoltani

Directors of Research: Ludovic Leclercq & Mahdi Zargayouna GRETTIA and LICIT

March 2019

Real-time.

ride-sharing

Integration of mobility services

Mathematical model and solving method Netw

Network congestion

Results and C conclusion fu

Challenges and future research

Transportation system integrated by new mobility services

Integration of mobility services Mathematical model and solving method

Network congestion

Results and conclusion

Challenges and future research

Real-time Ridesharing

• Ridesharing definition

Real-time.

- Dynamic ridesharing
- Independent
- •Cost-sharing

• Non-recurring trips (<> traditional carpooling or vanpooling) • Prearranged (<> casual ridesharing, hitch-hiking and hailing a taxi) • Automated matching

Integration of mobility services Mathematical model and solving method

Network congestion

Results and conclusion

Challenges and future research

Research questions

Real-time.

- Designing a fleet management system for a ride-sharing service
- Considering traffic congestion in ride-sharing

- Finding the optimal matching between participants in a very short time for large-scale problems
- Modeling the ride-sharing problem
- Managing both ride providers and passengers satisfaction
- Validating the optimization method

System main parts

- Simulation platform
- Optimization algorithm

1,2,...;A,B,...

Sequences

Integration of mobility services

Mathematical model and solving method

Mathematical model

Real-time.

ride-sharing

Objectives

- Passengers waiting time
- Passengers travel time
- Vehicles travel time
- Vehicles travel distance

Constraints

- Capacity of the cars
- Time window
- Number of sharing
- Quality of service

GFeatures

Door-to-door sharing

Results and

conclusion

- Serving all requests
- Number of seats
- NP-hard problem
- Branch-and-cut concept

7

Routing algorithm

Mobility as a
serviceReal-time.
ride-sharingResearch questionsIntegration of
mobility servicesMathematical model
and solving methodNetwork congestionResults and
conclusion

Challenges and future research

Assignment algorithm

- Exact algorithm
- Based on branch-and-cut method
- Validating algorithm
- Example

Passengers	Demanded seat	Number of sharing	Earliest pick up time	Latest arrival time	
1	1	3	8:00	8:45	
2	2	2	8:00	8:25	
3	2	1	8:15	9:00	
4	2	3	8:30	9:20	
Answer		Obj.			
Α	O1 > D1	4 517			
В	O1 > D1 >	418			
С	O1 > D1	390			
D	O3 > D3 >	• O4 > D4 O1	> D1 O2 > D2	2 416	

Network congestion impact

Dynamic traffic conditions:

- Plant model: that represents the traffic dynamics reality.
- Prediction model: that is used during the assignment process.

Mobility as a service	Real-time. ride-sharing	Research questions	Integration of mobility services	Mathematical model and solving method	Network congestion	Results and conclusion	Challenges and future research

Results:

Number of sharing	0	1	2	3
Total travel time	11037: 53: 00	10716: 38: 40	10647: 47: 30	10501: 23: 35
Passenger waiting time	2 min	4 min	8 min	12 min
Total number of cars	61353	56648	55542	55290
Computation time	33 sec	10 min	23 min	5 h

Results: Congestion

Conclusion

- More sharing can improve the providers objectives
- Number of sharing 1 and 2 make small increase in passengers objectives
- Computation time is acceptable for number of sharing 1 and 2
- The exact algorithm works well with up to 400 requests at each iteration

Challenges and Future researches

- Making the algorithm scalable for large-scale problems (proposing clustering-based heuristics)
- Switching the plant model to a more refine one
- Solving assignment problem for over 1 million requests
- Real-time and dynamic simulation of the problem
- Ride-sharing re-assignment in case of any disturbance

Thank you for your attention

