

Séminaire Modélisation des réseaux de transport

RIDE-HAILING SYSTEM AUTONOMOUS FLEETS OF ELECTRIC VEHICLES

Ghada BEN SAID

SEPTEMBER 29,2022

Supervisors by Mahdi ZARGAYOUNAI Tai-Yu MA **Mostafa AMELI**

TABLE OF CONTENT

MOTIVATION

CO2 Emission :Road Transportaion

by European Environment Agency :EEA

MOTIVATION

BY ECO ARTICLES .COM

-Electric vehicle

-Autonomous vehicle

-They are multiple services : Ride hailing / Ride sharing ...

Research a Scoop

-Provide mobility services

- Need to manage the charging plan and service plan all together

6

Scientific Question

How do we formulate and solve the problem of fleet management and charging plan for the fleet of AEV including the profit of driveres and system?

1:Liteerature Review 2: Mathematical formulation 3: Agent Based Simulation 4: Flowchart

Litterature Review

Fleet Management

(Maoet al. 2020) : A dynamic taxi ride-hailing

(Lacobucci2021): A ride sharing Autonomous Electric Vehicle system interacting with passengers

(Maciejewski 2016):Ride-hailing the assignment of passengers to vehicles, as traffic dynamics can alter the closer vehicle.

Charging Plan

(Zhang et al2020): A charging frame for EV for a transport by studing t parameters like battery capacity, r power, system cost...

(Shi al. 2014): analyzed 3 electri vehicle charging modes

(Tai-Yu-Ma 2021) : An online chargin sheduling model

These 3 issues are not adressed all together with a good level of detail in each part

Reinforcement Learning

work the tate	(Kullman et al2020) : An operatoe AEV using the DQN algorithm
іс	(Hu et al2017) :Used Deep Reinforcement Learning to learn the objective coefficients in a math program
٦g	(Verma2017) Used reinforcement learning to develop a system that helps the driver to predict the location of coming requests

Literature review

Type of mobility services :

Car pooling Ride-hailing Ride-sharing

Assignment manage used :

Fleet management Charging process

Mathematical formulation:

Linear Non-Linear Mixed Integer Programming

Cost Function:

Driver Passenger

Methodology:

Optimization RL method

Simulation Configuration

Solution Algorithm

Research	Problem setting					Mobility service			Assignment models					Mathematical formulation				Time-dependency		
	Suppl			De	mand				Fleet ma	nagment	Char	nging pro	cess			unematical fi	ormui	auon	Inne-0	rependency
	EV	AV	AEV	Fixed	On-demand	Car pooling	Ride-sharing	Ride-hailing	Predictive	Reactive	Time	Price	Heteroge neity	Repositioning	Linear	Non-Ilnear	MIP	Model-free	Static	Dynamic
Alshamsi, al (2009)		x			x								, í							x
Galland et al. (2014)		x			x	x									x					x
Chen,et al(2016)			x		x		x		x		x							x		x
Wang et al. (2018c)		x			x		x												x	
Lacobucci et al(2018)			x		x		x		x		x	x			x		x		x	
Oda ,Tachibana (2018)		x			x			x										x		x
Chaoui et al. (2018)	x				x											x				x
Nezafat (2019)		x			x			x												x
Yu et al.(2019)			x		x															x
Yang et al.(2019)			x																x	
Loeb et al. (2019)			x	x			x		x		x							x		x
You et al (2019)		x		x			x											x		x
Tan et al.(2019)	x				x			x	x							x				x
Bacchiani et al.(2019)					x															x
Wu et al.(2019a)	x			x														x		x
Miao et al.(2019)			x		x		x		x		x							x		x
Webb et al (2019)			x		x		x		x			x						x	x	
Qi et al. (2019)	x			x											x				x	
Balaji et al. (2019)		x			x															x
Bacchiani et al.(2019)		x													x					
Al-Kanj et al.(2020)			x	x				x				x		x	x					x
Zhang et al. (2020)			x					x	x									x		x
Wu et al.(2020)			x		x			x	x		x	x						x		x
Nishitani et al.(2020)		x														x				x
Wang , Sun (2020)		x			x			x							×					x
Kullman, Cousineau (2020)			x		x			x		x	×			x	x		x			x
Chao Mao et al. (2020)		x			x		x	x	x					x				x		x
Smart et al (2021)			x		x			x	x			x		x		x				x
Pan et al (2021)			x		x			x	x		x							x		x
Tai-Yu Ma (2021)	x				x					x	x	x	x		x					
Mohamed Alhusin (2022)		x			x											x				x
This work			x		x			x		x	x	x	x	x	×		x			x

		cost fur	ction		Metho	dology	Simulation (antiquistion	Solution algorithm
Research	Dr	iver	Pass	enger		ML method	annulation c	onfiguration	
	Service cost	Fuel cost/time	Service cost	Waitling time	Optimization	(RL)	Multi agent	traffic model	2
Alshamsi, al (2009)	x			x			x		Self-organization
Galland et al. (2014)	х		x	х			x		Route matching algorithm
Chen,et al(2016)	x	x		x	x				Multinomial logit mode
Wang et al. (2018c)	x					x			DQN
Lacobucci et al(2018)		x		x	x			x	Optimization algorithm
Oda ,Tachibana (2018)	x			x		x		x	DQN
Chaoui et al. (2018)		x				x			DQN
Nezafat (2019)	x		x			x		x	A3C
Yu et al.(2019)		x	x			×			A3C
Yang et al.(2019)						x			DOPG
Loeb et al. (2019)	x	x			x				Logit choice model
You et al (2019)	x		x			x	x		DNN
Tan et al.(2019)	x		x			x		x	DDPG
Bacchiani et al.(2019)						x			A3C
Wu et al.(2019a)		x	x			x			DDPG
Miao et al.(2019)		x	x	x	x			x	Multi-objective optimization mod
Webb et al (2019)	x	x	x	x	x				Multinomial Logit choice mode
Qi et al. (2019)		x				x		x	DDQN
Balaji et al. (2019)	x			x		x			PPO
Bacchiani et al.(2019)						x	x		A3C
Al-Kanj et al.(2020)	x				x				Dynamic programming
Zhang et al. (2020)				x	x		x		K-means clustering
Wu et al.(2020)		x	x		x			x	Logit choice model
Nishitani et al.(2020)	x					x		x	Double dueling
Wang , Sun (2020)	x		x	x		x	x		PPO
Kullman, Cousineau (2020)	x					x			DQN,DDQN,D3QN
Chao Mao et al. (2020)	x		x	x		x	x		Actor-critic
Smart et al (2021)	x		x			x		x	DQN
Pan et al (2021)	x		x		x			x	Model predictive control
Tai-Yu Ma (2021)	x				x			x	Langrangian algorithm
Mohamed Alhusin (2022)	x					x	x		DQN
This work	x	x	X	X		x	x		DQN.

This work

+ METHODOLOGY

Problem Statement

METHODOLOGY

Mathematical Formulation

Inspired by Tai-Yu-Ma Two-stage battery recharge scheduling and vehicle-charger assignment policy for dynamic electric dial-a-ride services -plosone -1-27(2021)

C 'represents the overall assignement status of charging sation in the system

$$c = \min \left[\sum_{\theta \in O} \sum_{k \in K} \gamma f + \sum_{\theta \in O} \sum_{k \in K} \alpha' + \sum_{\theta \in O} \sum_{k \in K} N_1 V_1 \right]$$

C': to minimize the total charging , the waiting time and the travel time until arriving at charging station

C": To minimize the total cost of the vehicle

C": To minimize the total cost of the vehicle

(5)

Energie Price (euro/KWH), Amount of energy charged

- The transition state : evaluate the energy level
- Level of energy and the quantity of energy to be no less than the energy demand plus a minimum reserve energy emin.
- Energy level limits states the upper and lower bounds of the energy level at the beginning of each epoch
- → The initial energy levelto start the 1st vehicle mission on the day

The number of vehicles and the charging stations

A represents the service plane: the assignment of vehicle to passenger and

minimize the waiting time of the whole period

$$A = \sum_{\theta \in O} \sum_{m \in M} N_2 V_{OM} + \min \sum_{\theta \in O} \sum_{m \in M} \alpha$$

Travel time from the location of vehicle "o" to the client "c"

The waiting time of the client to have a vehicle

The state function describing the evolution using a demand generator to know the number of users should answer

Part III

Rr: about the repositionning of the vehicle waiting future requests :

each vehicle can be assigned to its place

$$\operatorname{Rr} = \sum_{\theta \in O} \sum_{p \in P} d^{v} \circ p \quad \operatorname{Travel distance from t}$$

$$\sum_{p \in P} V_{\theta P} = 1 \quad ; \quad \forall \theta \in O \qquad \longrightarrow \qquad \text{To make sure that}$$

$$(18)$$

the location of vehicle "o" to the point "p"

t each vehicle can be assigned to one point

METHODOLOGY

Agent Based Approach

To optimize its own objectif function

we build a RL to optimize the fleet management

Reinforcement Learning

Reference :https://www.kdnuggets.com/2018/03/5things-reinforcement-learning.html

By Markov Decision Process

Ν	Number of Agents(AEVs)
S	S = (St , Sv, Sh)
А	{A1,A2,A3,}
P(s,a,s')	The transition probability
R(s,a)	The Reward Function
γ	Between 0and 1

State Variables

we model the state of the system by the tuple : state of time, state of vehicle, state of destination

S = (St, Sv, Sh)

Vq is characterized by the level of battery $\in [0,Q]$;

Ve is characterized by its locations the coordinate of the vehicle

 \in (xv,yv)

 $Vc \in \{1: idle, 2: serve, 3: reposition, 4: preprocess, 5: recharge\}$

Action for an agent

Serve Request

Request exists with energy feasible

Charging

Request exists or not with unfeasible energy

Reposition

No request exists and no waiting demand with energy feasible

Non-Action

Just finished serving

The table below summarizes all the rewards of all the process

states	actions	Reward
Vq	Q [100%, 30 % [= +150
	Q [30% , 10% [= -10
	Q < 10 %	= -1000
Vc	lose the customer < D	= -100
	pick up don't drop off	= -150
	Do not reposition the AEVs	= 0

METHODOLOGY

Flowchart

The System is formed by a set of Autonomous Electric Vehicles

> Vehicle needs to recharge Vehicle needs to be repositioned Vehicle ready to serve

Our organization chart designed by 3 parts

1: Initialization

2: Assigning process

3:Stopping Condition

1: Initialization

Distribution data :The network graph , the initial demand ..

2: Assigning process

Update the different numbers of vehicles in the fleet by updating the variable status

3:Stopping Condition

-we finish the whole system service

-we get a stochastir customer from the model generator and go again to step (3) to update the state variable for every time

Numerical Result

Programming :**Python** Math tools :**Equatio** Data collection: Google Scholar Project management :Google calendar

states	actions	Reward
Vq	Q [100%, 30 % [= +150
	Q [30% , 10% [= -10
	Q < 10 %	= -1000
Vc	lose the customer < D	= -100
	pick up don't drop off	= -150
	Do not reposition the AEVs	= 0

With RL we manage better the work hour

Node 3:	
Demands	[1]: Taxis available []
Demands	[1]: Taxis available [4, 6
Demands	[]: Taxis available [2, 3,
Demands	[]: Taxis available [0, 1,
Demands	<pre>[1]: Taxis available []: #</pre>
Demands	[1]: Taxis available [4, 6
Demands	[]: Taxis available [2, 3,
Demands	[]: Taxis available [0, 1,

Node 4: Demands [3, 1]: Taxis available [4, 7] Demands [3, 2, 3]: Taxis available [0]

we have more 85% we could response

The goal of the system is to answer all the requests

The goal of Each Agent is to optimize its own performance in term cost and profit

Conclusion

- -An operator of a ride-hailing system composed of Autonomous Electric Vehicles
- Reinforcement Learning algorithm
- -Repositionning/ Serving demand / recharging

-Other dynamic mobility services ride-sharing in a dynamic environment

 A the traffic congestion in the model : that we take to acompt of the traffic gym of other vehicles not only our taxis.

Ghada BEN SAID, MSc

Research engineer at Université Gustave Eiffel

Looking for PhD position

Feel free to contact me via:

ghadabensaid1995@gmail.com

Notation :

t	Interval of epochs $t \in T=[1,T]$
θ	Vehicles set in the area (environnement)
K	Chargers set in the zone (environnement)
р	Set of points where each vehicle can reposition (P)
e _t	Energy level at the start of each epoch t
e _{max}	Maximum vehicle energy level
e _{min}	Minimum vehicle energy level
e_L	Initial energy level for the vehicle to begin its mission

q _{max}	Maximum amount of energy
q_t	Amount of energy at the beginning of each epoch t
q _c	Amount of energy charged
f	Factor representing the relationship between the amount of energy that the charger needs and the charging rates of the charger
λ_t	Energy consumption
ρ_{e}	Energie Price (euro/KWH)
ď	Travel distance from the location of vehicle "o" to the point "p"
d_1	Travel distance from the location of vehicle" o" to the charge "k"
d_2	Travel distance from the location of vehicle "o" to the client "c"
N ₁	Travel time from the location of vehicle "o" to the charge "K"
N ₂	Travel time from the location of vehicle "o" to the client "c"
N^{V}	Travel time from the location of vehicle "o" to the point "p"
V_{0k}	Vehicle "O" is assigned to charge "K"
V _{OM}	Vehicle "O" is assigned to client "c"

V _{op}	Vehicle "O" is assigned to point "P"
α	The waiting time of the client to have a vehicle
α	The waiting time of vehicle "O" at charge "K"
7	The time of recharging
D _t	demand of number of customer of new request of each epoch t
v	vitesse de véhicule (km/min)

M	random set of customers per day
M_t^p	number of users should answer of each epoch t
R _{t-1}	Total number of users answer
Δ	the time interval [1,7[

2. Algorithm :

 Our environment is about a road network graph in which our autonomous electric vehicle can travel between adjacent cells (vertically, horizontally up,down) or can stay in the same place.

2) Initially, we start with a number N of taxis distributed arbitrarily.

3) The temporal dimension is discretized into time steps.

4) A vehicle V is characterized by - Its current position at time t ci(t). - Its state si(t) (i.e.

1:idle, 2:serve, 3:reposition, 4: preprocess, 5: recharge).

5) Passengers' requests P appear stochastically in the environment at every time step.

6) Each request P is characterized by two tuples and a time stamp:

- The pickup Location.

- The drop off location .

- The distance between the starting point of the client and the vehicle .

 The assignment between taxi V and request at time t is denoted by the Boolean variable VoM(t). It will be true if taxi i is assigned to request j at time t, and false otherwise.

 Requests can only be assigned to an inactive taxi or recharging taxi if the energy level > 30% or if the taxi is in a repositioning state.

After the assignment is done the taxi state will change to busy until it drops off the passenger.

10)At each time step a taxi can move to any of the passenger addresses if it will respect the waiting time of months equal Δ if not it is not worth moving.

 Several requests can come at the same time. So the taxi will take the closest distance to it so as not to lose customers and not let them wait too long and also to optimize the battery.

 The total number of requests is limited by a predefined upper bound, if reached the simulator will stop generating more requests. The time to get to a give time step.

14) A taxi will be available at the next time step after dropping off its current customer if the load level is greater than 30% and the travel time N_2 is less than or equal to Δ

15) if the taxi has finished its mission and it has no other requests and its charge level is more than 30% in this case it will reposition itself in its place in the parking lot.

16) if the taxi finishes its mission and it has another mission pending but its charge level is below the limit then it is obliged to cancel its requests and go to the nearest charger station

13) The time to get to a given passenger within the same cell is the same and it is equal to one